Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers

نویسندگان

  • Zongzhi Liu
  • Todd Z. DeSantis
  • Gary L. Andersen
  • Rob Knight
چکیده

The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignmen...

متن کامل

Naı̈ve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy †

The Ribosomal Database Project (RDP) Classifier, a naı̈ve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey’s Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignmen...

متن کامل

Genetic variations of avian Pasteurella multocida as demonstrated by 16S-23S rRNA gene sequences comparison

Pasteurella multocida is known as an important heterogenic bacterial agent causes some severe diseases such as fowl cholera in poultry and haemorrhagic septicaemia in cattle and buffalo. A polymerase chain reaction (PCR) assay was developed using primers derived from conserved part of 16S-23S rRNA gene. The PCR amplified a fragment size of 0.7 kb using DNA from nine avian P. multocida  isolates...

متن کامل

A comparative phylogenetic analysis of Theileria spp. by using two two "18S ribosomal RNA" and "Theileria annulata merozoite surface antigen" gene sequences

More than 185 species, strains and unclassified Theileria parasites are categorized in the Entrez Taxonomy. The accurate diagnosis and proper identification of the causative agents are important for understanding the epidemiology, prevention and appropriate treatment. This study aims to discuss the importance of two genes of Theileria annulata 18S ribosomal RNA (18S rRNA) and Theileria annulata...

متن کامل

Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities.

Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008